

HITACHI

SmoothDriveTM

HITACHI ORIGINAL CAPACITY CONTROL TECHNOLOGY IN VARIABLE REFRIGERANT FLOW

Cooling & Heating

Company Name

CUSTOMER SERVICE

SALES OFFICE

SPARE PARTS

DISTRIBUTOR

The specifications of this catalog may change without prior notice to allow Hitachi Cooling & Heating to incorporate the latest innovations for its customers.

customers. The information contained in this catalog is merely informative. Hitachi Cooling & Heating declines any responsibility in the broadest sense, for damage, direct or indirect, arising from the use and / or interpretation of the recommendations in this catalog.

CERTIFICATION

WARRANTY

SOCIAL MEDIA

Find the products of Hitachi Cooling & Heating with the best service and conditions at your Hitachi Distributor

2212-SD-BR-1

VRF air conditioners in buildings experience all kinds of changes during the day...

weather conditions...

Variations in temperature preferences...

Why SmoothDrive?

Part-load conditions cause real-world performance to deviate significantly from official published energy efficiency data. Which is why Hitachi's patented direct capacity control technology delivers...

Improved energy efficiency under part-load operation, which regulatory energy efficiency ratings do not account for.

This causes VRF systems to operate at partial load

More than 70% of the time during a year, a VRF System will be running under part-load conditions, with most systems operating at 50% or less of their capacity^{*1}.

These unpredictable part-load conditions cause real-world performance to deviate significantly from official published energy efficiency data.

It's a key reason why your customer may not fully experience all the energy savings they expected from new equipment.

AC operating hours per outside ambient temperature in Office (Japan, Tokyo) (concerning Large Split & VRF) *1 AC operation in heating Part-load operation!!!]

smoother compressor operation

Compressor rotation frequency is more precise and stable. On/Off cycles are reduced, while peaks and drops are diminished, reducing wear on the compressor.

*1. JIS B 8616:2015(Japanese packaged air conditioners standard) to arrange the performance test for the system

The simplicity of SmoothDrive

We believe the key to energy efficiency at part load is how generating capacity is controlled.

In a normal VRF system this capacity control can be complex, combining both control of refrigerant evaporation temperatures and compressor operation.

But at Hitachi Cooling & Heating we've developed a more simple approach called SmoothDrive.

temperature stability

With continuous monitoring and adjustment of the capacity based on compressor speed, indoor temperatures can be maintained more accurately

SmoothDrive^T

33

How SmoothDrive is different

SmoothDrive uses Direct Capacity Control...

Every few minutes SmoothDrive calculates the right capacity to deliver in order to maintain the set temperature accurately. It does this by analyzing the indoor temperature trend in each zone and any changes in demand, with a precision of up to 0.1°C sensitivity.

Direct Compressor Control

With this 0.1°C sensitivity

With this should say 0.1°C, information is sent from the IDUs to the ODU. As the set temperature is approached, only the compressor frequency is used to control the capacity, rather than the evaporation temperature.

Did you know?

Hitachi develop the world's first commercially available scroll compressor back in 1983 and to this day is a leading global supplier.

3 **Superior Compressor Operation**

By increasing or decreasing compressor speed with up to 0.1Hz (6rpm) precision, and where necessary being able to run at very low speed, the amount of refrigerant flowing from the ODU to the evaporator in each IDU is controlled precisely. The balance of load and capacity is monitored, and then controlled directly through the compressor speed, enabling room temperature to be close to the set temperature all the time without frequently stopping and starting the compressor.

End Result

Because compressor speed is calculated directly according to the gap between room and set temperature, it will more accurately balance the generating capacity and the load (demand) with less on/off cycles for the compressor. Just like a car that smoothly accelerates and gently brakes, it consumes less energy with less on/off operations.

05

Simplicity that works

Real-world energy efficiency

Improved energy efficiency under part-load operation, which regulatory energy efficiency ratings do not account for

Cooling Mode accumulated average COP at 35°C ambient

without SmoothDrive with SmoothDrive

accumulated average COP at 7°C ambient **Heating Mode**

without SmoothDrive

with SmoothDrive

** Outdoor Unit; 10HP class. Indoor Unit: 5HP class 4-way cassette unit * 2 pcs. In our own company's fixed-load testing facility(Dimension of the room per one indoor unit :5.6m×2.5m×3.1m)

Outdoor temp (DB / WB): 29°C / 19°C. Load per room (Sensible / Latent): 4.9kW / 0.0kW. Set temperature: 27°C. Initial Indoor unit temperature (DB / WB): 27°C / 19°C. Indoor unit fan airflow rate: Hi-mode

Averaged power/load are calculated for 5 hours from start. COP = Averaged load / Averaged power. Test Result Summary (Averaged load / Averaged power In Cooling: Without SmoothDrive (21.09/8.40 in 75%) (14.36/3.94 in 50%) (9.99/2.62 in 35%). With SmoothDrive (20.91/5.49 in 75%) (14.18/2.94 in 50%) (9.92/1.45 in 35%) In Heating: Without SmoothDrive (24.00/6.95 in 75%) (15.86/4.75 in 50%) (11.02/3.13 in 35%). With SmoothDrive (23.79/4.93 in 75%) (15.86/2.88 in 50%) (11.10/2.09 in 35%)

Temperature stability

With continuous monitoring and adjustment of the capacity based on compressor speed, indoor temperatures can be maintained more accurately

** Outdoor Unit; 10HP class. Indoor Unit: 5HP Class 4-way cassette unit * 2 pcs. In our own company's fixed-load testing facility(Dimension of the room per one indoor unit :5.6m×2.5m×3.1m) Outdoor temp (DB / WB): 29°C / 19°C. Load per room (Sensible / Latent): 4.9kW / 0.0kW. Set temperature: 27°C. Initial Indoor unit temperature (DB / WB): 27°C / 19°C. Indoor

unit fan airflow rate: Hi-mode

For the simplicity of the SmoothDrive temperature stability, Only one temperature change is shown in this graph. For more details, please consult our sales dealer.

20

Simplicity that works

Smoother compressor operation

Compressor rotation frequency is more precise and stable. On/Off cycles are reduced, while peaks and drops are diminished, reducing wear on the compressor.

Cooling Mode

without SmoothDrive

with SmoothDrive

In Heating Mode the effects are even more dramatic...

Heating Mode

75% Load

50% Load(Std)

35% Load

** Outdoor Unit; 10HP class. Indoor Unit: 5HP Class 4-way cassette unit * 2 pcs. In our own company's fixed-load testing facility(Dimension of the room per one indoor unit :5.6m×2.5m×3.1m). Outdoor temp (DB / WB): 29°C / 19°C. Load per room (Sensible / Latent): 4.9kW / 0.0kW. Set temperature: 27°C. Initial Indoor unit temperature (DB / WB): 27°C / 19°C. Indoor

unit fan airflow rate: Hi-mode.

SmoothDrive 2.0

Our latest generation technology

Our latest VRF models are equipped with SmoothDrive 2.0 which further improves efficiency, particularly at 10-35% part load thanks to 0.1°C temperature monitoring sensitivity.

Heating Mode

Availability

	SmoothDrive 1.0	SmoothDrive 2.0
Temperature Resolution	1.0°C	0.1°C
Energy Efficiency	****	★★★★★ improved performance at 10-35% load
Temperature Stability	****	****
Smoother Compressor Operation	****	****

Compatibility

		SmoothDrive 1.0	SmoothDrive 2.0	
ODU		Set Free Sigma HNBQ, HNCQ Set Free Sigma CNCQ, JNBBQ Water-Source VRF	air365 Max Pro air365 Max Set Free Sigma FSNS, FSNP Set Free Sigma FSXNS, FSXNP SideSmart (all models)	
IDU	4-way	-	RCI-1.0~6.0FSRP RCI-1.0~6.0FSKDN1Q	
	4-way compact	-	RCIM-0.6~2.5FSRE	11
	2-way	-	RCD-0.8~6.0FSR	
	1-way	RCIS-FSKDN1Q	RCS-0.8~3.0FSR	
	Ducted	RPI-FSN2SQ RPI-8.0 & 10.0FSNQ RPI-8.0 & 10.0FSN3Q	RPI-2.0~6.0FSR / RPI-8 & 10FSR RPIM-0.8~6.0FSR RPIH-3.0~6.0HNAUN1Q RPIH-3.0~6.0HNAUB1Q RPIM-0.8~2.5HNAUN1Q RPIM-0.8~2.5HNAUB1Q RPIL-0.8~6.0HNAUN1Q RPIZ-0.8~2.5HNATN1Q RPIZ-0.8~2.5HNDTS1Q	
	Wall Mounted	RPK-0.8~2.5HNBUSQ	RPK-0.4~4.0FSRM RPK-0.4~1.5FSRHM	
	Ceiling Suspended		RPC-1.5~6.0FSR	
	Floor Ceiling Convertible	RPFC-FSNQ		
	Floor Standing	RPF-FSN2E		
	Floor Concealed	RPFI-FSN2E	-	
Others	Total Heat Exchanger	-		
	Fresh Air Unit	RPI-KFNQ		
	DX-Kit	DXF-A1		e⊓
	Remote Sensor	THM-R21 (ARFG1)	-	Driv
Remote Controllers (in cases where Remote Control Thermistor is used for temperature control)		ARF1, AWR, HCWA10NEGQ, PC-LH7QE	ARFG1, ARC	Smooth